Elaboration of multimaterials optical fibers combining tellurite glass and metal for electro-optical applications

2020 
The development and the emergence of fully integrated all-fiber optical systems is very interesting from a technical point of view in photonics. Indeed, the development of mutimaterials fibers combining both optical waveguide properties and simultaneous in-fiber electrical excitation could provide plenty of innovative signal-processing, sensing or imaging functionalities. Here, we report the engineering of a new glass/metal composite fiber. For the glass, we have chosen tellurite glasses for their excellent thermo-viscous abilities (low Tg) and linear/nonlinear optical properties. This low Tg allows to have a larger panel of potential metals to be co-drawn with. The synthesis is firstly realized by build-in-casting at room atmosphere which allows to get a large-core. Then, the rod-in-tube technique and the insertion of metallic wires allow to get a step-index fiber with a small-core (7μm) and two continuous metallic electrodes running along the fiber axis (Oelectrodes = 30μm). Thus, we obtain a tellurite-based core-clad dual-electrode composite fiber made by direct, homothetic preform-to-fiber thermal co-drawing. The rheological and optical properties of the selected glasses allow both to regulate the metallic melting flow and to manage the refractive index core/clad waveguide profile. We will discuss the engineering of these multimaterials optical fibers and their characterization: thermal and viscosity properties, linear optical properties (loss), electrical properties with a continuity of the electrodes over meters of fiber.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []