Design and Analysis of an Integrated Three- Bay Thermoplastic Composite Wingbox

2021 
The design of a multi-part aerospace structural component, such as a wingbox, is a challenging process because of the complexity arising from assembly and integration, and their associated limitations and considerations. In this study, a design process of a stiffeners-integrated variable stiffness three-bay wingbox is presented. The wingbox has been designed for a prescribed buckling and post-buckling performance (a prescribed real testing scenario) and made from thermoplastic composite material system (Carbon-PEEK) with the total length of three meters. The stiffeners and spars are integrated into the top and bottom panels of the wingbox resulting a single-piece blended structure with no fasteners or joints. The bottom skin also has an elliptical cut-out for access purposes. The composite tows are steered around this cutout for strain concentration reduction purposes. The fiber/tow steering in the top skin bays (compression side) has also been considered for improved compression-induced buckling load carrying capacity. The proposed design has been virtually verified via high fidelity finite element analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []