Optimization of high-contrast metastructure silicon waveguides for wavelength-tunable delay

2017 
The ability to tune the delay of an optical signal is a key component in photonics-based RF phased-array beamforming applications. Recent work has shown that high-contrast metastructure waveguides can be designed for a wide range of delay tuned by carrier injection or signal wavelength, enabling two-dimensional beam steering. In this work, we further explore the parameter space of these structures to maximize the delay change over optical wavelength while maintaining low insertion loss, with the goal of implementing phased-array beamforming in integrated photonic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []