Comparison Study on the effect of Gold Nanoparticles shape in the forms of Star, hallow, Cage, Rods, and Si-Au and Fe-Au core-shell on Photothermal Cancer Treatment.

2020 
Abstract Gold nanoparticles (GNPs) indicate potential in the development of cancer treatments as vehicles for thermal damage of cancer cells because of their photothermal heating capability. Herein, we aim to investigate the effect of GNPs geometry as photothermal transducers on cellular uptake and photothermal therapy (PTT) efficacy. For this aim, seven different shapes of anisotropic GNPs: stars, hollow, rods, cages, spheres, Fe-Au, and Si-Au core shells were synthesized and investigate the effect of shape on GNPs optical properties. The physic-chemical characterization of prepared GNPs was investigated by UV-Vis, DLS-Zeta, and TEM analysis. The effect of GNPs geometry on cellular uptake was investigated by ICP-MS and flow cytometry method. The PTT potential of these GNPs was compared on MCF7 cells in vitro using MTT assay, cell cycle, and Annexin-V apoptosis assay. While all these GNPs could absorb and convert near-infrared light into heat, gold nanostars exhibited the lowest cytotoxicity, highest cellular uptake and highest heat generation compared to other structures. Following photothermal treatment, due to substantial heat producing in MCF7 cells, the apoptosis induction rate was greatly increased for all anisotropic gold nanostructures (stars, hollow, rods, and cages) especially gold nanostars. Combined, we can conclude that GNPs geometry affects cellular uptake and heat generation amount as well as cell destruction by apoptosis pathway and the gold nanostar is promising candidates for photothermal destruction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    2
    Citations
    NaN
    KQI
    []