Size-controlled self-assembly of anisotropic sepiolite fibers in rubber nanocomposites

2018 
Abstract The development of advanced polymer nanocomposites requires a strong filler-polymer interfacial interaction and an optimal filler nanodispersion. The incorporation of the clays into a polymer matrix frequently does not improve the composite mechanical properties, owing to both poor dispersion and macroscopic particle dimensions. In this work, pristine and organically-modified sepiolites (Sep) were structurally modified by an acid treatment, which provides nano-sized sepiolite (NS-Sep) fibers with reduced particle size and increased silanol groups on the surface layer. NS-Sep fibers were used to prepare styrene-butadiene rubber nanocomposites with enhanced mechanical properties. Dynamic-mechanical analysis of clay polymer nanocomposites demonstrated that the NS-Sep fibers provided an excellent balance between reinforcing and hysteretic behavior, compared to the large-sized pristine Sep and isotropic silica. This was related to the enhanced interfacial chemical interaction between NS-Sep and rubber, as well as to the size and self-assembly of anisotropic nanofibers to form filler network structures, as supported by transmission electron microscopy analysis. The preparation of nanocomposites, based on Sep nanofibers obtained by a simple and versatile acid treatment, can thus be considered an alternative approach for the designing of advanced clay polymer nanocomposites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    23
    Citations
    NaN
    KQI
    []