Magnetic moments of octet baryons at finite density and temperature

2010 
We investigate the change of magnetic moments of octet baryons in nuclear matter at a finite density and temperature. Quark-meson coupling models are employed in describing properties of octet baryons and their interactions. Magnetic moments of octet baryons are found to increase non-negligibly as density and temperature increase, and we find that temperature dependence can be strongly correlated with the quark-hadron phase transition. Model dependence is also examined by comparing the results from the quark-meson coupling (QMC) model to those by the modified QMC (MQMC) model where the bag constant is assumed to depend on density. Both models predict sizable dependence on density and temperature, but the MQMC model shows a more drastic change of magnetic moments. Feasible changes of the nucleon mass by strong magnetic fields are also reported in the given models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []