A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory

2015 
In this work, the solvation and electronic structure of the aqueous chloride ion solution was investigated using density functional theory (DFT) based ab initio molecular dynamics (AIMD). From an analysis of radial distribution functions, coordination numbers, and solvation structures, we found that exact exchange (Exx) and non-local van der Waals (vdW) interactions effectively weaken the interactions between the Cl− ion and the first solvation shell. With a Cl–O coordination number in excellent agreement with experiment, we found that most configurations generated with vdW-inclusive hybrid DFT exhibit sixfold coordinated distorted trigonal prism structures, which is indicative of a significantly disordered first solvation shell. By performing a series of band structure calculations on configurations generated from AIMD simulations with varying DFT potentials, we found that the solvated ion orbital energy levels (unlike the band structure of liquid water) strongly depend on the underlying molecular struct...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    132
    References
    36
    Citations
    NaN
    KQI
    []