Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine
2017
Abstract This experimental study focuses on developing new combustion concept for compression ignition (CI) engines by achieving partially homogeneous charge, leading to low temperature combustion (LTC). Partially premixed charge compression ignition (PCCI) combustion is a single-stage phenomenon, with combustion shifting towards increasingly premixed combustion phase, resulting in lower in-cylinder temperatures. PCCI leads to relatively lower emissions of oxides of nitrogen (NOx) and particulate matter (PM) simultaneously. To investigate combustion, performance and emission characteristics of the PCCI engine, experiments were performed in a mineral diesel fueled single cylinder research engine, which was equipped with flexible fuel injection equipment (FIE). Effects of fuel injection pressure (FIP) were investigated by changing the FIP from 400 bar to 1000 bar. Experiments were carried out by varying start of main injection (SoMI) timings (from 12° to 24° before top dead center (bTDC)), when using single pilot injection. This experimental study included detailed investigations of particulate characteristics such as particulate number-size distribution using engine exhaust particle sizer (EEPS), particulate bound trace metal analysis using inductively coupled plasma-optical emission spectrometer (ICP-OES), and soot morphology using transmission electron microscopy (TEM). PCCI combustion improved with increasing FIP (up to 700 bar) due to superior fuel atomization however further increasing FIP deteriorated PCCI combustion and engine performance due to intense knocking. NOx and PM emissions were also found to be lowest at 700 bar FIP. Moreover, count mean diameter (CMD) of particulate was maximum at 700 bar FIP. Therefore, medium FIP (700 bar) was the most suitable FIP for PCCI combustion.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
85
Citations
NaN
KQI