Extreme Environments: From supermassive black holes to supernovae

2016 
In this work I study X-ray observations as a tool of distinguishing between models of supernovae type Ia and relativistic jets - collimated outflows of matter from active galactic nuclei (AGN). Supernovae type Ia are thermonuclear runaways that are expected to originate from either a merger of two white dwarfs or from an accreting white dwarf in a binary system with a massive star. The first models challenges supernovae type Ia as standard candles for distance measurements. In an accreting system, the white dwarf is expected to undergo the thermonuclear runaway when reaching the Chandrasekhar mass. In a merger of two white dwarves the final mass would differ from supernova to supernova, leading to varying luminosities and subsequent errors in the distance calculations. The accretion model predicts a higher amount of 55Co, which synthesizes 3.5 times more radioactive 55Fe. The resulting line doublet is emitted at 5.888 keV and 5.899 keV. I study current and future X-ray missions as a tool for distinguishing between both models by measuring the line flux. My simulations show that with the current satellite Chandra, the models can be distinguished up to a distance of 2 Mpc, within the local group. The proposed Athena mission holds promise for a detection of the 5.9 keV line for the accretion model of distances up to 5 Mpc. The recent supernova SN2014J in January 2014 was the closest supernova in four decades with a distance of ~3.5 Mpc. At the highest expected 55Fe line flux it could not be observed by either XMM-Newton or Chandra. In the remaining work I study jets from active galactic nuclei (AGN) using broadband observations from the radio band to high-energy gamma-rays. Jets are powerful, persistent, and luminous phenomena and are not fully understood, especially their jet launching, confinement and particle acceleration. Blazars are a subclass of AGN, with the jet pointed at a small angle to the line of sight, which allows to directly study the emission mechanisms in jets. They are very variable sources, requiring monitoring and quasi-simultaneous spectral data. The TANAMI program is a multiwavelength project studying southern jets and monitoring a sample of ~100 sources with high cadence with VLBI methods. In addition, Fermi/LAT is continuously monitoring the sky. I apply a Bayesian Blocks algorithm to the LAT data in order to find the time ranges where the source flux is statistically consistent with being constant. From these time ranges I choose the time ranges with sufficient multiwavelength data for constructing broadband SEDs. I use VLBI data from the TANAMI program in combination with quasi-simultaneous data at optical/UV, X-ray and gamma-ray energies from Swift/UVOT, SMART, Swift/XRT, and Fermi/LAT to construct broadband spectral energy distributions (SEDs) for the 22 Fermi/LAT brightest TANAMI blazars, resulting in 81 SEDs. Blazar SEDs typically show two non-thermal humps, and FSRQs often have an additional thermal excess in the optical/UV. I fit the data with an empirical log parabolic model. The blazar sequence states that peaks of sources with high luminosities are found at lower frequencies. While this blazar sequence has been challenged and modified, my results generally agree with it. I am able to separate the 81 SEDs into states of low, intermediate, and high fluxes, based on their LAT flux in respect to the average LAT flux. The blazar sequence for SEDs in the low and in the intermediate state agree well with the sequence. In the high state a large scatter is present, and the sequence is not visible. It suggests that during an outburst a change in the jet occurs, which is not present in the intermediate state. No high-peaked sources are found in a high state. This is possibly due to a lack of flux information in the optical, X-ray or VHE regime, but it is interesting to note that these sources do not show large outbursts in the Fermi/LAT. The observed pattern in the high state is consistent with the 'harder-when-brighter' trend often found in the X-ray spectra of flaring blazars. I further find that the Compton dominance (which is redshift independent) agrees well with the blazar sequence. I find that the Fermi's blazar divide, which seems to indicate a lack of sources peaking between ~10^14 Hz and ~10^16 Hz is likely due to absorption/extinction in this energy band, and is not source-intrinsic. I study the thermal excess found in the optical/UV spectra of blazars, often called the "Big Blue Bump"(BBB). The temperature of the BBB in BL Lac objects is usually ~6000 K, which suggest that the BBB is emission from the host galaxy, which is not completely outshone by the non-thermal continuum. In quasars the temperatures of the BBB lie between 10000 K and 40000 K, much lower than the expected 76000 K for an accretion disk temperature of a supermassive black hole with a mass of ~10^9 solar masses. It is possible that this is due to reprocessing of the emission by clouds near the broad line region. It is interesting to note however, that the BBB of the 22 sources can be better described by a single temperature black body than a multi-temperature black body. For an accretion disk we would expect a very large range in temperatures, possibly further broadened by gravity and the velocity of disk. Another possible explanation is free-free emission in a hot corona surrounding the black hole, though a more detailed investigation is necessary to draw firm conclusions about the BBB in blazars. I have studied the fundamental plane of black holes as a tool for estimating the black hole mass. The fundamental plane of black holes finds one plane in a black hole mass, X-ray luminosity, and radio luminosity three-dimensional space. Separate works in the literature find various parameters for this plane, depending on the source population used for determining the parameters. I have tested most of the recent works and used the X-ray and radio luminosity from the SEDs to estimate the black hole mass. This estimate has been compared to measured black hole masses. I find that the parameters by Bonchi (2013) match the observed values closely, although I find two sources, which are consistently lower by a few orders of magnitude than their measured values. It is possible that these measurements are affected by boosting effects, although that would imply much lower black hole masses for some sources than expected, possibly falling into the range of intermediate mass black holes. While detailed physical modeling of SEDs is often not able to distinguish between hadronic and leptonic models for blazars jets, current and future neutrino observatories offer the exciting possibility of an association of neutrinos with a blazar. This would provide unambiguous evidence of hadronic processes in AGN and their contribution to the cosmic ray spectrum. The IceCube detector at the South Pole has recently seen high-energy neutrino events above 1 PeV. Due to the steeply falling atmospheric background spectrum, these are most likely of extraterrestrial origin. Due to the isotropic distribution of all neutrinos, they are likely extragalactic. From the integrated flux of the high-energy hump (which is possibly of hadronic origin), I calculate the maximum possible neutrino flux. I used the six TANAMI sources in positional agreement with the first two PeV events and calculated the maximum-possible event number detectable by IceCube to be 1.9+/-0.4. This is not directly indicative of a physical association, but shows that blazars as a class are energetically capable of producing the observed neutrinos. For the third PeV neutrino, which was detected with a reconstructed energy of ~2 PeV, we found that one individual blazar in the error circle dominated the expected neutrino output. This blazar was undergoing a huge outburst at the time of arrival of the neutrino event. For a higher electromagnetic flux we expect to detect more neutrinos. This is indicative of a physical association, but a 5% possibility of a chance coincidence remains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []