Approaches for Motion Control Interface and Tele-Operated Overhead Crane Handling Tasks

2021 
This study aimed to identify the effects of different approaches to a motion control interface (MCI) in tele-operated crane handling tasks. In this study, due to the difficulty of applying the actual equipment to the experiment, we presented a prototype system of a tele-operated overhead handling (TOH) crane. Specifically, we investigated participants’ task performance including the accuracy of task completion during unloading, heart rate variation, workload, and the relationships between these factors when four motion control approaches were used: pointing (P), keyboard (K), orientation (O), hand-free gesture (HG). Experiments were conducted with two groups of participants: 21 university students and 11 crane operators used each of the four control methods. A task condition for handling iron blocks was tested. The efficacy of each motion control approach for task performance was evaluated by a within-subject experiment with a novice group. The expert group was used for comparing the task performance and satisfaction in the prototype system with the novices, evaluating whether the prototype system was reproducible for a real setting in the construction site. The results showed that the task completion time, the weight of physical demand, and the overall scores for workload were significantly impacted by the type of motion control: when HG was used, the task completion time increased. Particularly, using HG had the potential to increase the overall workload score, while physical laboriousness was also potentially increased by HG. Conversely, unloading accuracy, heart rate, and mental demand were not affected by motion control approaches. Generally, the expert group spent more time completing the tasks, but they performed better unloading accuracy than the novices in all methods. Ninety-one percent of the experts gave positive feedback on the reproducibility of the prototype system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []