Local deep level transient spectroscopy using super-higher-order scanning nonlinear dielectric microscopy and its application to imaging two-dimensional distribution of SiO2/SiC interface traps

2017 
We propose a new technique called local deep level transient spectroscopy (local-DLTS), which utilizes scanning nonlinear dielectric microscopy to analyze oxide/semiconductor interface traps, and validate the method by investigating thermally oxidized silicon carbide wafers. Measurements of C-t curves demonstrate the capability of distinguishing sample-to-sample differences in the trap density. Furthermore, the DC bias dependence of the time constant and the local-DLTS signal intensity are investigated, and the results agree to characteristic of interface traps. In addition, the Dit values for the examined samples are estimated from the local-DLTS signals and compared with results obtained using the conventional high-low method. The comparison reveals that the Dit values obtained by the two methods are of the same order of magnitude. Finally, two-dimensional (2D) distributions of local-DLTS signals are obtained, which show substantial intensity variations resulting in random 2D patterns. The 2D distributi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    11
    Citations
    NaN
    KQI
    []