Petrogenesis and Metallogenic Implications of Neoproterozoic Granodiorite in the Super-Large Shimensi Tungsten-Copper Deposit in Northern Jiangxi, South China

2018 
The newly discovered Shimensi deposit is a super-large tungsten-copper (W–Cu) deposit with a metal reserve of 742.55 thousand tonnes (kt) W and 403.6 kt Cu. The orebodies are hosted in Mesozoic granites, which intruded the poorly documented Shimensi granodiorite belonging to the Jiuling batholith, the largest intrusion (outcrop > 2500 km2) in South China. Our new SHRIMP (Sensitive High Resolution Ion MicroProbe) zircon dating revealed that the granodiorite at Shimensi (ca. 830–827 Ma) was formed coeval (within analytical uncertainty) or slightly earlier than those in many other places (ca. 819–807 Ma) of the Jiuling batholith. The Neoproterozoic Shimensi granodiorite is peraluminous and high-K calc-alkaline, and contains low P content with no S-type trend (positive P2O5 vs. SiO2 correlation) displayed, thus best classified as peraluminous I-type. The I-type classification is also supported by the zircon REE patterns, largely (93%) positive eHf(t) (−0.87 to 6.60) and relatively low δ18O (5.8–7.7‰). The Neoproterozoic Shimensi granodiorite was formed after the continental arc magmatism (ca. 845–835 Ma), but before the post-collisional S-type granite emplacement (ca. 825–815 Ma) in the Jiangnan Orogen. Therefore, we propose that the Shimensi granodiorite was formed in a collisional/early post-collisional setting. The δ18O increase from the Shimensi granodiorite to many younger (ca. 819–807 Ma) granodiorites (6.0–8.5‰) in the Jiuling batholith probably reflects an increase of supracrustal rock-derived melts with the progress of collision. The Shimensi granodiorite contains low zircon Ce4+/Ce3+ and Eu/Eu*, suggesting a relatively reducing magma that does not favor porphyry Cu–Au mineralization. This left a high background Cu concentration (avg. 196 ppm) in the Neoproterozoic granodiorite, which may have contributed to the Mesozoic W–Cu mineralization, when the granodiorite is intruded and assimilated by the Mesozoic granites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    2
    Citations
    NaN
    KQI
    []