AcidoCEST MRI Evaluates the Bone Microenvironment in Multiple Myeloma.

2021 
PURPOSE Multiple myeloma (MM) is an incurable disease of malignant plasma cells in the bone marrow (BM). Adaptive responses to hypoxia may be an essential element in MM progression and drug resistance. This metabolic adaptation involves a decrease in extracellular pH (pHe), and it depends on the upregulation of glucose transporters (GLUTs) that is common in hypoxia and in cancer cells. CEST MRI is an imaging technique that assesses pHe indirectly by the exchange rate of magnetic saturation transfer between labile protons on a solute and water. Thus, this study aimed to determine the feasibility of acidoCEST MRI for pHe measurement using an orthotopic mouse model of MM compared with GLUT1 immunofluorescence staining as a reference. PROCEDURES Orthotopic BM engrafted MM xenografts were established in NSG/NOD mice using the human RPMI8226 myeloma cell line. AcidoCEST MRI was performed approximately 6 weeks after intravenous challenge, before and after intravenous administration of iopamidol. BM pHe values were generated via fitting the CEST spectrum with the Bloch-McConnell equations. Samples were decalcified, sectioned, and immunostained for GLUT1 expression. Pearson's correlation was used to assess the relationship between pHe and [H3O+] versus GLUT1 expression. RESULTS Ten mice underwent acidoCEST MRI followed by immunofluorescent histologic analysis. A strong negative correlation was seen between pHe versus GLUT1 expression (r = - 0.75, p < 0.001). After transformation of pH to [H3O+], a strong positive correlation between [H3O+] and GLUT1 expression was observed (r = 0.8, p < 0.001). CONCLUSIONS AcidoCEST MRI can measure the extracellular pH of bone marrow affected by multiple myeloma. In this MM orthotopic mouse model, pHe measured by acidoCEST MRI showed strong correlations with the metabolic phenotype of BM tumor assessed by immunofluorescent histological assessment of GLUT1 overexpression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []