SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins

2019 
Abstract The protein prenylation (or S-prenylation) is one of the most essential modifications, required for the association of membrane of a plethora of signalling proteins with the key biological process such as protein trafficking, cell growth, proliferation and differentiation. Due to the ubiquitous nature of S-prenylation and its role in cellular functions, any defect in the biosynthesis or regulation of the isoprenoid leads to the occurrence of a variety of diseases including neurodegenerative disorders, metabolic issues, cardiovascular diseases and one of the most fatal diseases, cancer. This depicts the strong biological significance of S-prenylation, thus, the timely and accurate identification of S-prenylation sites is crucial and may provide with possible ways to understand the mechanism of this modification in proteins. To avoid laborious, resource demanding and expensive experimental techniques of identifying S-prenylation sites, here, we propose a novel predictor namely SPrenylC-PseAAC by integrating the Chou's Pseudo Amino Acid Composition (PseAAC) and relative/absolute position-based features. A 2-tier classification was performed i.e., at first level, identification of prenylation and non-prenylation sites is performed, while at the second level, identification of S-farnesylation and S-geranylgeranylation sites is performed. Using jackknife, perdition model validation gave 95.31% accuracy for tier-1 classification and 91.42% for tier 2 classification, while for 10-fold cross-validation, it gave 93.68% accuracy for tier-1 classification and 89.70% for tier 2 classification. Thus the proposed predictor can help in predicting the Prenylation sites in an efficient and accurate way. The SPrenylC-PseAAC is available at ( biopred.org/prenyl) .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    125
    References
    68
    Citations
    NaN
    KQI
    []