Feasibility of Using Sequential Sulfurized Nanoscale Zerovalent Iron-Persulfate Process to Degrade Tetrabromobisphenol A

2021 
This study proposed a sequential redox process to partially degrade tetrabromobisphenol A (TBBPA) within a reactor to a great extent. After 72 hours in an anoxic environment, 20 ppm of TBBPA could be effectively degraded by sulfurized zerovalent iron nanoparticles (S-nZVI) at concentrations of 2 g L-1 and 4 g L-1. Biphenol A (BPA) together with tri-, di-, and monobromobisphenol A was detected by high-performance liquid chromatography (HPLC) suggesting that TBBPA was debrominated by S-nZVI in a stepwise manner. Following the S-nZVI treatment, a persulfate-advanced oxidation process (PS-AOP) system with persulfate concentrations varied from 5 to 20 mM was incorporated to degrade the final debrominated byproduct, BPA, for 2 hours. The two-stage anoxic/oxic reactions at the same reactor with initial conditions (0.037 mM TBBPA, 4 g L-1 of S-nZVI, pH 6 in anoxic stage, 20 mM of PS in the latter oxic stage) were investigated. The sulfurized layer played an important role in such a system and hypothetically contributes to increasing electron transfer from Fe0 core as well as hydrophobicity of the NP surface. It was demonstrated that the S-nZVI/PS-AOP system could effectively remediate TBBPA and BPA and consequently provide a promising strategy to remedy brominated organic pollutants in the environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []