Analysis of an ICF technology shear walls system

2010 
Born from the need of sustainability of the built environment, Insulated Concrete Forms (ICF) tilt-up wall systems ensure a more sustainable construction by greater energy efficiency, environmental friendly, reduced labor, low material costs, and versatility. A research was carried out in order to asses an ICF tilt-up wall system with regard to the requirements of the actual earthquake resistant design of reinforced concrete wall systems and reinforced concrete wall equivalent dual systems. After a preliminary analysis of the constructive provisions, a comprehensive structural analysis program was performed in order to identify the best practices in implementing the system on the market. As variables were considered the design ground acceleration (0.08g, 0.20g and 0.32g), the normalized axial force (0.05, 0.20 and 0.40), the quality of concrete (classes C 16/20 and C 20/25), the effective thickness of the walls (i.e., 150 mm and 200 mm), the longitudinal reinforcing ratio at the ends of the wall (0.005, 0.020 and 0.040) and the type of primary shear wall (i.e., high ductility and medium ductility respectively). The results are presented in a synthetic manner, which enables an easy comprehension of the conclusions drawn from the processing of the numerical data. The full compliance with the European structural design frame can be reached by two detailing strategies, related to the severity of the actions specific to each site and solution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []