Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere

2020 
Abstract We consider a nonholonomic system that describes the rolling without slipping of a spherical shell inside which a frame rotates with constant angular velocity (this system is one of the possible generalizations of the problem of the rolling of a Chaplygin sphere). After a suitable scale transformation of the radius of the shell or the mass of the system the equations of motion can be represented as a perturbation of the integrable Euler case in rigid body dynamics. Using this representation, we explicitly calculate a Melnikov integral, which contains an isolated zero under some restrictions on the system parameters. Thereby we prove the absence of an additional integral in this system and the existence of chaotic trajectories. We conclude by presenting numerical experiments that illustrate the system dynamics depending on the behavior of the Melnikov function.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    4
    Citations
    NaN
    KQI
    []