Phase Current Sensor and Short-Circuit Detection based on Rogowski Coils Integrated on Gate Driver for 1.2 kV SiC MOSFET Half-Bridge Module

2018 
Silicon-carbide (SiC) MOSFETs are enabling electrical vehicle motor drives to meet the demands of higher power density, efficiency, and lower system cost. Hence, this paper seeks to explore the benefits that a gate-driver-level intelligence can contribute to SiC-based power inverters. The intelligence is brought by PCB-embedded Rogowski switch-current sensors (RSCS) integrated on the gate driver of a 1.2 kV, 300 A SiC MOSFET half-bridge module. They collect two MOSFET switch currents in a manner of high magnitude, high bandwidth, and solid signal isolation. The switch-current signals are used for short-circuit detection under various fault impedances, as well as for phase-current reconstruction by subtracting one switch current from another. The fundamentals and noise-immunity design of the gate driver containing the RSCS are presented in the paper and can be applied to any half-bridge power module. A three-phase inverter prototype has been built and operated in continuous PWM mode. On this setup, the performance and limitations of the short-circuit detection and phase-current reconstruction are experimentally validated by comparing with commercial current probes and Hall sensors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    16
    Citations
    NaN
    KQI
    []