CsUGT78A15 catalyzes the anthocyanidin 3-O-galactoside biosynthesis in tea plants.

2021 
Anthocyanins are a group of natural water-soluble pigments in plants that contribute to the pink-purple color of a range of tissues. Because anthocyanins have various biological activities in human health, there is great research interest in the development of anthocyanin-rich foods and beverages, including purple shoot tea. Anthocyanidin 3-O-galactosides have been identified as one of the main anthocyanin components in purple shoot tea, but the enzyme responsible for their biosynthesis remains unclear. UDP-galactose anthocyanidin 3-O-galactosyltransferase (UA3GalT) is presumed to catalyze the galactosylation of anthocyanidin. Therefore, we assayed the UA3GalT activity in five tea samples with varying degrees of purple color and found that its activity was strongly positively correlated (r = 0.929, p < 0.05) with anthocyanin content. Phylogenetic analysis and sequence alignment suggested that CsUGT78A15 encoded a UA3GalT enzyme. Enzymatic assays indicated that rCsUGT78A15 could catalyze the synthesis of cyanidin 3-O-galactoside and delphinidin 3-O-galactoside using UDP-galactose as a sugar donor, and it showed higher catalytic efficiency towards delphinidin than cyanidin. These results indicate that CsUGT78A15 acts as a UA3GalT in vitro. Subcellular localization showed that CsUGT78A15 was located in the endoplasmic reticulum (ER) and nucleus, consistent with the location of anthocyanin synthesis. Transient overexpression of CsUGT78A15 in the fruit of mature 'Granny Smith' apples showed that the upregulation of CsUGT78A15 promoted cyanidin 3-O-galactoside accumulation in apple skins. These results suggested that CsUGT78A15 could catalyze galactosylation of anthocyanidins in planta. Our findings provide insight into the biosynthesis of anthocyanins in tea plants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []