Dual-Ligand Modification of PEGylated Liposomes Used for Targeted Doxorubicin Delivery to Enhance Anticancer Efficacy

2019 
Mannose receptor (CD206) and E-selectin are selectively expressed in M2-like tumor-associated macrophages (M2-TAMs) and activated endothelial cells of vessels surrounding tumor tissues. With the knowledge that d-mannose is the natural ligand of mannose receptors and l-fucose is the key calcium chelator for tumor-associated carbohydrate antigens (TACAs) binding to E-selectin, herein, we firstly reported d-mannose polyethylene glycol (PEG) conjugates (Man-PEG) and l-fucose PEG conjugates (Fuc-PEG) co-modified liposomal doxorubicin (DOX-MFPL) to improve tumor-targeting ability. The dual-ligand modified PEGylated liposomes (DOX-MFPL) were assessed by both in vitro and in vivo trials. Compared with the single-ligand d-mannose- or l-fucose-modified liposomes (DOX-MPL or DOX-FPL), DOX-MFPL achieved an increased distribution of DOX in tumor tissues. The antitumor study based on S180 tumor-bearing mice was conducted and the superior tumor inhibitory rate was shown with DOX-MFPL, probably owing to the superior tumor-targeting effect of DOX-MFPL and the modulation of the tumor microenvironment with the exhaustion of TAMs. In general, the dual-ligand drug delivery systems are expected to be promising in the development of specific and efficient methods for tumor treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    14
    Citations
    NaN
    KQI
    []