Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis

2017 
Acquired resistance to chemotherapy remains a major stumbling block in cancer treatment. Chronic inflammation has a crucial role in induction of chemoresistance and results, in part, from the induction and expansion of inflammatory cells that include myeloid-derived suppressor cells (MDSCs) and IL-13+ Th2 cells. The mechanisms that lead to induction of activated MDSCs and IL-13+ Th2 cells have not yet been identified. Here we demonstrated that doxorubicin (DOX) treatment of 4T1 breast tumor-bearing mice led to the induction of IL-13R+miR-126a+ MDSCs (DOX-MDSC). DOX-MDSC promote breast tumor lung metastasis through MDSC miR-126a+ exosomal-mediated induction of IL-13+ Th2 cells and tumor angiogenesis. The induction of DOX-MDSC is regulated in a paracrine manner. DOX treatment not only increases interleukin (IL)-33 released from breast tumor cells, which is crucial for the induction of IL-13+ Th2 cells, but it also participates in the induction of IL-13 receptors and miR-126a expressed on/in the MDSCs. IL-13 released from IL-13+Th2 cells then promotes the production of DOX-MDSC and MDSC miR-126a+ exosomes via MDSC IL-13R. MDSC miR-126a+ exosomes further induce IL13+ Th2 cells in a positive feed-back loop manner. We also showed that MDSC miR-126a rescues DOX-induced MDSC death in a S100A8/A9-dependent manner and promotes tumor angiogenesis. Our findings provide insight into the MDSC exosomal-mediated chemoresistance mechanism, which will be useful for the design of inhibitors targeting the blocking of induction of miR-126a+ MDSCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    95
    Citations
    NaN
    KQI
    []