Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance.

2020 
Insects, reptiles and many other animals are often referred to as being ‘cold-blooded’ because, unlike mammals and birds, their body temperature fluctuates with the temperature of their surrounding environment. As a result, many cold-blooded animals are very sensitive to changes in local climate. Environmental factors, such as temperature and precipitation, as well biotic factors, such as two species competing for food or the presence of a predator, may influence how well an animal performs at different temperatures. However, few studies have examined how both environmental and biotic factors affect the range of temperatures in which a cold-blooded animal is able to survive and reproduce. When Asian burying beetles reproduce, they lay their eggs around buried animal carcasses that can provide food for their offspring. Previous studies have found that individual burying beetles can cooperate with each other to defend themselves against their main competitor, blowflies, which also lay their eggs on animal carcasses. Here, Tsai et al. used mathematical and experimental approaches to study how blowflies affect the range of temperatures in which burying beetles are able to live under different environmental conditions. The experiments showed that when blowflies were present, the range of temperatures that burying beetles were able to survive and reproduce in was smaller. Furthermore, the optimal temperature for the burying beetles to live in shifted back, away from that of their competitor. Larger groups of burying beetles were able to survive and reproduce in a greater range of temperatures than smaller groups, even when blowflies were present. This suggests that increasing the amount bury beetles cooperate with each other may make them more resilient to changes in temperature. The Earth is currently experiencing a period of climate change and therefore it is important to understand how different species of animals may respond to to changing temperatures. These findings reinforce the idea that even a small change in temperature may lead to changes in how different species interact with each other, which in turn influences the ecosystem in which they live.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    2
    Citations
    NaN
    KQI
    []