Supplementation with long-acting progesterone in early diestrus in beef cattle: II. Relationships between follicle growth dynamics and luteolysis
2019
Abstract The aims were to characterize follicular dynamics in response to supplemental progesterone (P4) and to investigate the relationships between follicular growth and onset of luteolysis in P4-treated cows, submitted or not to artificial insemination (AI). Nonsuckled beef cows detected in estrus were assigned to receive AI or to remain non-AI. Three days after ovulation (ie, D3), AI cows were injected with 150 mg of long-acting P4 (AI + injectable P4 formulation [iP4]; n = 22), and the non-AI cows were assigned to receive 150 mg iP4 (n = 19) or saline (control, n = 19). Between D3 and D21, growth dynamics of the dominant follicles (DFs) was monitored by ultrasonography. Plasma P4 concentrations were measured every other day from D9 to D19. Pregnancy status (ie, P: pregnant and NP: nonpregnant) was examined by ultrasound on D28 to D32. Injectable P4 formulation supplementation decreased average maximum diameter of first-wave DF (DF1). Neither day of emergence of DF2 or DF3 nor the proportion of two- or three-wave cycles were altered by supplemental P4. Daily mean diameter of DF2 and DF3 was also similar between control and iP4 groups. Consistently, daily mean diameter of DF1 in iP4-treated cows was smaller for cows that underwent luteolysis by D15 compared to a later onset. Progesterone concentrations between D9 and D19 decreased earliest in the iP4 group, latest in the control group and was intermediate for the NP-AI + iP4 group. In addition, three-wave cycles presented a delayed decrease on plasma P4 concentrations than two-wave cycles. Further analysis revealed that on two-wave cycles, P4 concentrations on D15 were lowest in the iP4 and NP-AI + iP4 animals compared to the control and P-AI + iP4 groups. Conversely, for three-wave cycles, on D15, P-AI + iP4, NP-AI + iP4, and controls had greater P4 concentrations than the iP4 group. In summary, our data indicate that impairment of first follicular growth was associated with P4-induced shortened luteal lifespan (D14–D15) and that three-wave cycles after AI can be more supportive for pregnancy maintenance in P4-treated cows. We speculate that such conditions play a critical role in the embryonic ability to inhibit iP4-induced early luteolysis reported in part I of this series.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
4
Citations
NaN
KQI