language-icon Old Web
English
Sign In

Sharp Remez inequality

2018 
Let an algebraic polynomial $P_n(\zeta)$ of degree $n$ be such that $|P_n(\zeta)|\le 1$ for $\zeta\in E\subset\mathbb{T}$ and $|E|\ge 2\pi -s$. We prove the sharp Remez inequality $$ \sup_{\zeta\in\mathbb{T}}|P_n(\zeta)|\le \mathfrak{T}_{n}\left(\sec \frac{s} 4\right),$$ where $\mathfrak{T}_{n}$ is the Chebyshev polynomial of degree $n$. The equality holds if and only if $$ P_n(e^{iz})=e^{i(nz/2+c_1)}\mathfrak{T}_n\left(\sec\frac s 4\cos \frac {z-c_0} 2\right), \quad c_0,c_1\in\mathbb{R}. $$ This gives the solution of the long-standing problem on the sharp constant in the Remez inequality for trigonometric polynomials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []