Genetic analysis of wheat (Triticum aestivum L.) and related species with SSR markers

2013 
Genetic diversity among 19 Triticum aes- tivum accessions and 73 accessions of closely related species was analyzed using simple sequence repeat (SSR) markers. Forty-four out of 497 SSR markers were polymorphic. In total 274 alleles were detected (mean 6.32 alleles per locus). The polymorphic information content (PIC) of the loci ranged from 0.3589 to 0.8854 (mean 0.7538). The D genome contained the highest mean number of alleles (6.32) followed by the A and B genomes (6.13 and 5.94, respectively). The correlation between PIC and allele number was significant in all genome groups (0.7540, 0.7361 and 0.7482 for A, B and D genomes, respec- tively). Among the seven homologous chromosome groups, genetic diversity was lowest in group 7 and highest in group 5. In cluster and principal component analyses, all accessions grouped according to their genomes were consistent with their taxonomic classi- fication. Accessions with the A and D genomes were clustered into two distinct groups, and AABB accessions showed abundant genetic diversity and a close relationship. Triticum durum and T. turgidum were clustered together, consistent with their morpho- logical similarity. Cluster analysis indicated emmer is closely related to hexaploid wheat. Compared with common wheat, higher genetic variation was detected in spelt, T. aestivum subsp. yunnanense and subsp. tibetanum. In addition, a close genetic relationship between T. polonicum and T. macha was observed. The results of the clustering and principal component analyses were essentially consistent, but the latter method more explicitly displayed the relationships among wheat and closely related species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []