Hexagonal Molecular Tiling by Hexagonal Macrocycles at the Liquid/Solid Interface: Structural Effects on Packing Geometry

2017 
We present here hexagonal tiling using hexagonal phenylene-ethynylene and phenylene-butadiynylene macrocycles attached by alkyl ester groups, PEM-C6 and PBM-C8, respectively, or triethylene glycol ester groups, PEM-TEG and PBM-TEG, respectively, at each vertex of the macrocyclic periphery at the liquid/solid interface. In this study, we focused on the effects of macrocyclic core size and the chemical properties of side chains attached to macrocyclic cores as well as solute concentrations on the hexagonal geometry of self-assembled monolayers. STM observations at the 1,2,4-trichrolobenzene/graphite interface revealed that PEM-C6 formed a honeycomb structure by van der Waals interactions between the interdigitated alkyl chains. However, upon increasing solute concentration, it changed to more dense hexagonal structure (tentatively called loose hexagonal structure I). In contrast, PBM-C8 formed loose hexagonal structure II of a slightly different packing mode at low concentration, while at high concentration...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    14
    Citations
    NaN
    KQI
    []