Numerical modeling of wave propagation over sea wall and submerged breakwater using WCSPH

2020 
In this paper, a linear Lagrangian numerical model is used for simulating the solitary wave propagation over the sloped sea wall, as well as the regular wave propagation over an Impermeable submerged breakwater, called the relatively compact (GCM) hydrodynamic model of relatively compact particles (WCSPH). To simulate fluid turbulence, the SPS turbulence model, which was obtained by large eddy simulation (LES) approach, was used. The results of numerical simulations were compared with laboratory experiments. Also, the results of present numerical model were compared with the numerical model Shen et al. (2004). The results shown, the WCSPH computations produce better results than those of model Shen et al. (2004), with respect to the experimental data. The results of this study show that WCSPH method provides a useful tool to investigate the wave propagation over coastal structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []