Modulation of NAD+ biosynthesis activates SIRT1 and resists cisplatin-induced ototoxicity.

2021 
Cisplatin, the most widely used platinum-based anticancer drug, often causes progressive and irreversible sensorineural hearing loss in cancer patients. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. Nicotinamide adenine dinucleotide (NAD+), a co-substrate for the sirtuin family and PARPs, has emerged as a potent therapeutic molecular target in various diseases. In our investigates, we observed that NAD+ level was changed in the cochlear explants of mice treated with cisplatin. Supplementation of a specific inhibitor (TES-1025) of α-amino-β-carboxymuconate-e-semialdehyde decarboxylase (ACMSD), a rate-limiting enzyme of NAD+de novo synthesis pathway, promoted SIRT1 activity, increased mtDNA contents and enhanced AMPK expression, thus significantly reducing hair cells loss and deformation. The protection was blocked by EX527, a specific SIRT1 inhibitor. Meanwhile, the use of NMN, a precursor of NAD+ salvage synthesis pathway, had shown beneficial effect on hair cell under cisplatin administration, effectively suppressing PARP1. In vivo experiments confirmed the hair cell protection of NAD+ modulators in cisplatin treated mice and zebrafish. In conclusion, we demonstrated that modulation of NAD+ biosynthesis via the de novo synthesis pathway and the salvage synthesis pathway could both prevent ototoxicity of cisplatin. These results suggested that direct modulation of cellular NAD+ levels could be a promising therapeutic approach for protection of hearing from cisplatin-induced ototoxicity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []