The negative feedback loop of NF-κB/miR-376b/NFKBIZ in septic acute kidney injury

2020 
Sepsis is the leading cause of acute kidney injury (AKI). However, the pathogenesis of septic AKI remains largely unclear. Here, we demonstrate a significant decrease of microRNA-376b (miR-376b) in renal tubular cells in mice with septic AKI. Urinary miR-376b in these mice was also dramatically decreased. Patients with sepsis with AKI also had significantly lower urinary miR-376b than patients with sepsis without AKI, supporting its diagnostic value for septic AKI. LPS treatment of renal tubular cells led to the activation of NF-κB, and inhibition of NF-κB prevented a decrease of miR-376b. ChIP assay further verified NF-κB binding to the miR-376b gene promoter upon LPS treatment. Functionally, miR-376b mimics exaggerated tubular cell death, kidney injury, and intrarenal production of inflammatory cytokines, while inhibiting miR-376b afforded protective effects in septic mice. Interestingly, miR-376b suppressed the expression of NF-κB inhibitor ζ (NFKBIZ) in both in vitro and in vivo models of septic AKI. Luciferase microRNA target reporter assay further verified NFKBIZ as a direct target of miR-376b. Collectively, these results illustrate the NF-κB/miR-376b/NFKBIZ negative feedback loop that regulates intrarenal inflammation and tubular damage in septic AKI. Moreover, urinary miR-376b is a potential biomarker for the diagnosis of AKI in patients with sepsis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    6
    Citations
    NaN
    KQI
    []