Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces

2016 
Microstructured superhydrophobic surfaces have broad applications such as anti-fouling and drag reduction.The performance of such surfaces strongly depends on the stability of liquid-gas interfaces, which affects physical processes including wetting transition, restoration and bubble evolution.Various physical factors including pressurization and gas diffusion may destabilize the liquid-air interfaces, and lead to evolution in different manners.In this paper, we first summarize the three types of interfacial stability problems for liquid-gas interfaces.Relying on external stimulations, the liquid-air interface may evolve into different stages and exhibit different morphologies.The recent progress of research on the stability and control of liquid-air interfaces in both droplet systems and submersion circumstances has been reviewed.Based on this review, remaining challenges for future research have been given.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []