Refinement of the spectra of exon usage by combined effects of extracellular stimulus and intracellular factors.

2014 
Abstract Finely tuned differential expression of alternative splice variants contributes to important physiological processes such as the fine-tuning of electrical firing or hearing frequencies; yet the underlying molecular basis for the expression control is not clear. The inclusion levels of four depolarization-regulated alternative exons were measured by RT-PCR in GH 3 pituitary cells under different conditions of stimulation and/or RNA interference of splicing factors. The usage of the exons was reduced by membrane depolarization to various extents and was differentially modulated by the knock-down of splicing factors hnRNP L, L-like, I (PTBP1) or K or their combinations. A spectrum of each exon's level was produced under six knock-down conditions and was significantly shifted by depolarization. When all these conditions were considered together, a more refined or expanded spectrum of exon usage was obtained for each of the four exons. As a proof of principle for the molecular basis of the fine-tuning of exon usage, we show in the cases of hnRNP L and LL that their differential effects through the same element or different combinations of RNA sequences by the same factor hnRNP L are critical. The results thus demonstrate that the combined effect of varying extracellular stimuli and intracellular factors/RNA sequences refines or expands the spectra of endogenous exon usage, likely contributing to the fine-tuning of cellular properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    5
    Citations
    NaN
    KQI
    []