Architecture agnostic algorithm for reconfigurable optical interferometer programming

2021 
We develop the learning algorithm to build an architecture agnostic model of a reconfigurable optical interferometer. A procedure of programming a unitary transformation of optical modes of an interferometer either follows an analytical expression yielding a unitary matrix given a set of phase shifts or requires an optimization routine if an analytic decomposition does not exist. Our algorithm adopts a supervised learning strategy which matches a model of an interferometer to a training set populated by samples produced by a device under study. A simple optimization routine uses the trained model to output phase shifts corresponding to a desired unitary transformation of the interferometer with a given architecture. Our result provides the recipe for efficient tuning of interferometers even without rigorous analytical description which opens opportunity to explore new architectures of the interferometric circuits.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []