A Compliance-Based Compensation Approach for Designing High-Precision Flexure Mechanism

2012 
This paper presents an approach of utilizing parasitic motion compensation for designing high-precision flexure mechanism. This approach is expected to improve the accuracy of flexure mechanism without changing its degree of freedom (DOF) characteristic. Different from the method which mainly concentrates on how to compensate the parasitic translation error of a parallelogram-type flexure mechanism existing in most of the literatures, the proposed approach can compensate the parasitic motion produced by rotation in company with translation. Besides, the parasitic motion of a flexure mechanism is formulated and evaluated by utilizing its compliance. To specify it, the compliance of a general flexure mechanism is calculated firstly. Then the parasitic motions introduced by both rotation and translation are analyzed by utilizing the resultant compliance. Subsequently, a compliance-based compensation approach is addressed as the most important part of this paper. The design principles and procedure are further proposed in detail to help with improving the accuracy of the flexure mechanism. Finally, a case study of a 2R1T flexure mechanism is provided to illustrate this approach, and FEA simulation is implemented to demonstrate its validity. The result shows that it is a robust design method for the design of high-precision flexure mechanism.Copyright © 2012 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []