Sensitivity analysis of human lower extremity joint moments due to changes in joint kinematics
2015
Despite the widespread applications of human gait analysis, causal interactions between joint kinematics and joint moments have not been well documented. Typical gait studies are often limited to pure multi-body dynamics analysis of a few subjects which do not reveal the relative contributions of joint kinematics to joint moments. This study presented a computational approach to evaluate the sensitivity of joint moments due to variations of joint kinematics. A large data set of probabilistic joint kinematics and associated ground reaction forces were generated based on experimental data from literature. Multi-body dynamics analysis was then used to calculate joint moments with respect to the probabilistic gait cycles. Employing the principal component analysis (PCA), the relative contributions of individual joint kinematics to joint moments were computed in terms of sensitivity indices (SI). Results highlighted high sensitivity of (1) hip abduction moment due to changes in pelvis rotation (SI = 0.38) and hip abduction (SI = 0.4), (2) hip flexion moment due to changes in hip flexion (SI = 0.35) and knee flexion (SI = 0.26), (3) hip rotation moment due to changes in pelvis obliquity (SI = 0.28) and hip rotation (SI = 0.4), (4) knee adduction moment due to changes in pelvis rotation (SI = 0.35), hip abduction (SI = 0.32) and knee flexion (SI = 0.34), (5) knee flexion moment due to changes in pelvis rotation (SI = 0.29), hip flexion (SI = 0.28) and knee flexion (SI = 0.31), and (6) knee rotation moment due to changes in hip abduction (SI = 0.32), hip flexion and knee flexion (SI = 0.31). Highlighting the “cause-and-effect” relationships between joint kinematics and the resultant joint moments provides a fundamental understanding of human gait and can lead to design and optimization of current gait rehabilitation treatments.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
19
Citations
NaN
KQI