Examining the impact of ancillary ligand basicity on copper(I)–ethylene binding interactions: a DFT study

2012 
A theoretical investigation at the density functional theory level (B3LYP) has been conducted to elucidate the impact of ligand basicity on the binding interactions between ethylene and copper(I) ions in [Cu(η 2-C2H4)]+ and a series of [Cu(L)(η 2-C2H4)]+ complexes, where L = substituted 1,10-phenanthroline ligands. Molecular orbital analysis shows that binding in [Cu(η 2-C2H4)]+ primarily involves interaction between the filled ethylene π-bonding orbital and the empty Cu(4s) and Cu(4p) orbitals, with less interaction observed between the low energy Cu(3d) orbitals and the empty ethylene π*-orbital. The presence of electron-donating ligands in the [Cu(L)(η 2-C2H4)]+ complexes destabilizes the predominantly Cu(3d)-character filled frontier orbital of the [Cu(L)]+ fragment, promoting better overlap with the vacant ethylene π*-orbital and increasing Cu → ethylene π-backbonding. Moreover, the energy of the filled [Cu(L)]+ frontier orbital and mixing with the ethylene π*-orbital increase with increasing pK a of the 1,10-phenanthroline ligand. Natural bond orbital analysis reveals an increase in Cu → ethylene electron donation with addition of ligands to [Cu(η 2-C2H4)]+ and an increase in backbonding with increasing ligand pK a in the [Cu(L)(η 2-C2H4)]+ complexes. Energy decomposition analysis (ALMO-EDA) calculations show that, while Cu → ethylene charge transfer (CT) increases with more basic ligands, ethylene → Cu CT and non-CT frozen density and polarization effects become less favorable, yielding little change in copper(I)–ethylene binding energy with ligand pK a. ALMO-EDA calculations on related [Cu(L)(NCCH3)]+ complexes and calculated free energy changes for the displacement of acetonitrile by ethylene reveal a direct correlation between increasing ligand pK a and the favorability of ethylene binding, consistent with experimental observations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    5
    Citations
    NaN
    KQI
    []