Meningioma phospholipid profiles measured by31P nuclear magnetic resonance spectroscopy

1994 
Fourteen cases of intracranial meningioma were characterized after chloroform/methanol extraction by31P nuclear magnetic resonance (NMR) spectroscopy at 202.4 MHz. Each phospholipid class detected in the extracts was identified and quantitated in terms of its molar percentage relative to the total phospholipids measured. The following phospholipids were assayed by31P NMR: phosphatidylglycerol, phosphatidic acid, diphosphatidylglycerol, ethanolamine plasmalogen, phosphatidylethanolamine (PE), lysophosphatidylinositol, phosphatidylserine, sphingomyelin, lysophosphatidylcholine (LPC), phosphatidylinositol (PI), sphingosylphosphorylcholine and phosphatidylcholine. In addition, two unidentified phospholipids were detected with resonances at 0.13 and −0.78 ppm, respectively. Three distinct types of spectra were obtained on the extracts and grouped accordingly for comparison purposes. Type 1 tumors showed unusual31P NMR profiles with low levels of PE and PI and elevated levels of LPC; type 2 tumors were characterized by low levels of the ethanolamine phospholipids and near equivalent levels of PI and LPC. The spectra of type 1 and type 2 tumors were characteristic of degenerative cells that lacked membrane permeability associated with loss of ethanolamine plasmalogen in the presence of significant phospholipid turnover. Meningiomas belonging to the third spectral type showed characteristics similar to those of normal tissues with normal levels of PE and ethanolamine plasmalogen, as well as very low levels of LPC relative to PI. Type 3 tumors lacked the characteristic signs of degeneration noted in type 1 and type 2 tumors. The data corroborate and augmentin vivo spectroscopic findings reported earlier and demonstrate the value of31P NMR spectroscopic phospholipid analysis on lipid extracts for the characterization of meningiomas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    34
    Citations
    NaN
    KQI
    []