Global existence and asymptotic dynamics in a 3D fractional chemotaxis system with singular sensitivity

2020 
Abstract In this paper, we investigate the global existence and asymptotic dynamics of solutions to a fractional singular chemotaxis system in three dimensional whole space. We deal with the new difficulties arising from fractional diffusion by using Riesz transform and Kato-Ponce’s commutator estimates appropriately, and establish the local existence of solution. Then with the help of combining the local existence and the a priori estimates, the global existence and uniqueness of solution with small initial data is derived. Moreover, we obtain the asymptotic decay rates of solution by the method of energy estimates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []