SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer

2021 
SUMOylation emerged as the inducer for the sorting of bioactive molecules into extracellular vesicles (EVs) triggering lymphangiogenesis, further driving tumor lymph node (LN) metastasis, but the precise mechanisms remain largely unclear. Herein, we identified that bladder cancer (BCa) cell-secreted EVs mediated the intercellular communication with human lymphatic endothelial cells (HLECs) through the transmission of a long noncoding RNA ELNAT1, and promoted lymphangiogenesis and LN metastasis in a SUMOylation-dependent manner in both cultured BCa cell lines and mouse models. Mechanistically, ELNAT1 induced UBC9 overexpression to catalyze the SUMOylation of hnRNPA1 at lysine-113 residue, which mediated the recognition of ELNAT1 by endosomal sorting complex required for transport (ESCRT) and facilitated their packaging into EVs. EV-mediated ELNAT1 was specifically transmitted into HLECs and epigenetically activated SOX18 transcription to induce lymphangiogenesis. Importantly, blocking the SUMOylation of tumor by downregulating UBC9 expression markedly reduced lymphatic metastasis in EV-mediated ELNAT1-treated BCa in vivo. Clinically, EV-mediated ELNAT1 was correlated with LN metastasis and poor prognosis of patients with BCa. These findings highlight a molecular mechanism that EV-mediated ELNAT1/UBC9/SOX18 regulatory axis promotes the lymphangiogenesis and LN metastasis of BCa in a SUMOylation-dependent manner, and implicate ELNAT1 as an attractive therapeutic target for LN metastatic BCa.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    8
    Citations
    NaN
    KQI
    []