Growth and stacking fault reduction in semi-polar GaN films on planar Si(112) and Si(113)
2012
We report on metal organic vapor phase epitaxy of semi-polar growth of nearly (106) oriented GaN films on Si(112) and (105) and (104) GaN on Si(113). We analyze the GaN crystallites by field emission-scanning electron microscopy (FE-SEM), scanning transmission electron microscopy (STEM), photoluminescence (PL), and cathodoluminescence (CL). A correlation between optical properties and microstructure is presented. Our studies reveal a significant reduction of basal plane stacking faults (BSFs) in semi-polar GaN grown on planar Si(112) by applying a low temperature (LT) AlN interlayer. We find that the insertion of the LT-AlN interlayer can eliminate the stacking faults in the upper GaN layer, when the LT-AlN interlayer is inserted on a smooth GaN buffer. The LT-AlN interlayer results in lattice relaxation due to misfit dislocation formation at the GaN/LT–AlN interface. In comparison, GaN grown on Si(113) with same growth conditions and a rough GaN surface does not show any BSF reduction while it is reduced for a smooth GaN layer (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
13
Citations
NaN
KQI