Microstructure evolution and bonding mechanisms of silica sol bonded coating at elevated temperatures

2020 
Abstract High emissivity coating plays a critical role in thermal protective system, which can radiate a large amount of aero-convective heat. Silica sol bonded MoSi2-SiC-Al2O3 (S-MSA) coating was proved to be promising for mullite fibrous insulation. However, the bonding mechanisms of the coating at elevated temperatures are not clear. In this work, the S-MSA coatings were heat-treated at temperatures from 600 °C to 1500 °C to reveal the bonding mechanisms at elevated temperatures. The S-MSA coatings go through a relatively stable stage (600 °C-1000 °C), a crystallization stage (1100 °C-1200 °C), and a densification stage (1300 °C-1500 °C) at ever increasing temperatures. Results show that both the contact damage resistance and the bonding strength of the calcined coatings exhibit a decrease followed by an increase at elevated calcination temperatures, with the inflection point at 1200 °C, corresponding to the transition temperature of the bonding mechanisms from 600 °C to 1500 °C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []