Proteomic analysis reveals oxidative stress response as the main adaptative physiological mechanism in cows under different production systems.

2012 
Abstract Three groups of cows representing three ranges of welfare in the production system were included in the study: two groups of Bruna dels Pirineus beef cattle maintained under different management systems (good and semiferal conditions) and a group of Alberes cows, a breed that lives in the mountains (hardest conditions). In order to identify new stress/welfare biomarkers, serum from Bruna cows living in both environments was subjected to DIGE labelling, two-dimensional electrophoresis and MALDI-MS or ion trap MS. Identification was achieved for 15 proteins, which mainly belonged to three biological functions, the oxidative stress pathway (glutathione peroxidase (GPx) and paraoxonase (PON-1)), the acute phase protein family (Heremans Schmid glycoprotein alpha2 (α2-HSG)) and the complement system. Biological validation included the Alberes breed. GPx and PON-1 were validated by an enzymatic assay and found to be higher and lower, respectively, in cows living in hard conditions. α2-HSG was validated by ELISA and found to be reduced in hard conditions. Other biomarkers of the redox status were also altered by living conditions: protein carbonyl content, superoxide dismutase (SOD) and glutathione reductase (GR). Our results show that changes in the redox system are the main adaptation of cows living in challenging environmental conditions. This article is part of a Special Issue entitled: “Farm animal proteomics”.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    25
    Citations
    NaN
    KQI
    []