Contribution of quantitative changes in individual ionic current systems to the embryonic development of ventricular myocytes:a simulation study

2013 
Early embryonic rodent ventricular cells exhibit spontaneous action potential (AP), which disappears in later developmental stages. Here, we used 3 mathematical models—the Kyoto, Ten Tusscher–Panfilov, and Luo–Rudy models—to present an overview of the functional landscape of developmental changes in embryonic ventricular cells. We switched the relative current densities of 9 ionic components in the Kyoto model, and 160 of 512 representative combinations were predicted to result in regular spontaneous APs, in which the quantitative changes in Na+ current (I Na) and funny current (I f) made large contributions to a wide range of basic cycle lengths. In all three models, the increase in inward rectifier current (I K1) before the disappearance of I f was predicted to result in abnormally high intracellular Ca2+ concentrations. Thus, we demonstrated that the developmental changes in APs were well represented, as I Na increased before the disappearance of I f, followed by a 10-fold increase in I K1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    8
    Citations
    NaN
    KQI
    []