Patterns of cell thickness oscillations during directional migration of Physarum polycephalum
2015
The functional relationship between the velocity of cell locomotion and intracellular spatial patterns of thickness oscillations in the acellular slime mould Physarum polycephalum was studied. The freely migrating plasmodial cells of 300–800 µm length were tadpole-shaped and displayed thickness oscillations along their longitudinal (body) axis. Two distinct patterns of intracellular thickness oscillations were observed in dependence on the locomotive velocity. The first mode consisted of a single travelling wave that propagated from the rear to the front of the cell. This pattern occurred when the plasmodium migrated slowly. The second mode was a multinodal standing wave that was found during events of fast propagation. Transitions between these two types of cell thickness oscillation patterns took place in narrow propagation velocity intervals. We discuss the possible mechanism leading to these patterns, which are conjectured to modulate both the intracellular pressure and the velocity of free locomotion of the cell.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
17
Citations
NaN
KQI