Photochemical degradation of the environmental pollutants over the worm-like Nd2CuO4-Nd2O3 nanostructures

2019 
Abstract The synthesis of Nd 2 CuO 4 -Nd 2 O 3 photosensitive nanocomposites by a combined electrochemical deposition-pyrolysis method is reported for the first time. The X-ray diffraction powder (XRD) analysis was well demonstrated the formation of the Nd 2 CuO 4 tetragonal and Nd 2 O 3 hexagonal (partially cubic) phases in the heterostructures. Scanning electron microscopy (SEM), energy dispersive x-ray (EDX), fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectra (DRS), and Brunauer–Emmett–Teller (BET) specific surface area analysis methods were also used to characterize the samples. The results of DRS analysis showed that the photocatalyst has the band gap of 3.3 eV describing its response to ultraviolet (UV) photons. The catalytic activity was evaluated by photodegradation of two semivolatile organic compounds (SVOCs) i.e., 4-methoxy-2-nitrophenol (4Mx2Np) and 3-methyl-4-nitrophenol (3M4Np) which are known as important pollutions in the atmosphere. The pH effect, kinetics and mechanism of the photoreactions were also discussed. The recycling experiments were also performed and the results indicated that the prepared photocatalysts have high capacity for subsequent removal of the pollutants under ultraviolet light.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    6
    Citations
    NaN
    KQI
    []