Dynamic Scheduler Management Using Deep Learning
2020
The ability to manage the distributed functionality of
large multi-vendor networks will be an important step
towards ultra-dense 5G networks. Managing distributed
scheduling functionality is particularly important, due to its influence over inter-cell interference and the lack of standardization for schedulers. In this paper, we formulate a method of managing distributed scheduling methods across a small cluster of cells by dynamically selecting schedulers to be implemented at each cell. We use deep reinforcement learning methods to identify suitable joint scheduling policies, based on the current state of the network observed from data already available in the RAN. Additionally, we also explore three methods of training the deep reinforcement learning based dynamic scheduler selection system. We compare the performance of these training methods in a simulated environment against each other, as well as homogeneous scheduler deployment scenarios, where each cell in the network uses the same type of scheduler. We show that, by using deep reinforcement learning, the dynamic scheduler selection system is able to identify scheduler distributions that increase the number of users that achieve their quality of service requirements in up to 77% of the simulated scenarios when compared to homogeneous scheduler deployment scenarios.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
24
References
2
Citations
NaN
KQI