Doped but Stable: Spirobisacridine Hole Transporting Materials for Hysteresis-Free and Stable Perovskite Solar Cells

2020 
Four spirobisacridine (SBA) hole-transporting materials were synthesized and employed in perovskite solar cells (PSCs). The molecules bear electronically inert alkyl chains of different length and bulkiness, attached to in-plane N atoms of nearly orthogonal spiro-connected acridines. Di-p-methoxyphenylamine (DMPA) substituents tailored to the central SBA-platform define electronic properties of the materials mimicking the structure of the benchmark 2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene (spiro-MeOTAD), while the alkyl pending groups affect molecular packing in thin films and affect the long-term performance of PSCs. Devices with SBA-based hole transporting layers (HTL) attain efficiencies on par with spiro-MeOTAD. More importantly, solar cells with the new HTMs are hysteresis-free and demonstrate good operational stability, despite being doped as spiro-MeOTAD. The best performing MeSBA-DMPA retained 88% of the initial efficiency after a 1000 h aging test under constant illumi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    23
    Citations
    NaN
    KQI
    []