Trace-element systematics of pyrite and its implications for refractory gold mineralisation within the carbonaceous metasedimentary units of Palaeoproterozoic South Purulia shear zone, eastern India

2019 
Globally, refractory gold occurs in significant proportions in many types of gold deposits. The present work reports the occurrence of sulphide-hosted refractory gold within the carbonaceous phyllites of the South Purulia shear zone in the Singhbhum crustal province, eastern India. Detailed textural characteristics, paragenesis and trace-element concentrations of different generations of pyrites were studied to understand their evolutionary stages and the mechanism of gold incorporation in pyrites. Four types of pyrites, which are closely associated with gold mineralisation were identified in the host rock, i.e., carbonaceous phyllite. Py I is of diagenetic origin, whereas Py II, Py III and Py IV are of hydrothermal origin. Laser ablation inductively coupled plasma mass spectrometry studies confirm the presence of invisible/refractory gold concentration up to 110.55 ppm within these pyrites. The positive correlation between Au and As in pyrite indicates the significant role of As in the incorporation of gold in pyrite. Fourier transform infrared spectroscopy confirms the presence of organic matter that provided suitable redox conditions for the precipitation of auriferous pyrites. The refractory gold mineralisation is attributed to widespread sulphidation during both sedimentation and hydrothermal ore-forming processes. Transformation of diagenetic pyrite to pyrrhotite during prograde metamorphism of carbonaceous rocks promoted the liberation of sulphur and Au from the lattice of abundant diagenetic pyrites to the hydrothermal fluid which later precipitated sulphides in the quartz ± carbonate veins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    104
    References
    3
    Citations
    NaN
    KQI
    []