Assembly of 6-aza-2-thiothymine on gold nanoparticles for selective and sensitive colorimetric detection of pencycuron in water and food samples

2019 
Abstract A facile and novel nanosensor analytical strategy was developed for the colorimetric detection of pencycuron fungicide in rice, potato, cabbage, and water samples based on the pencycuron-induced aggregation of 6-aza-2-thiothymine-functionalized gold nanoparticles (ATT-AuNPs). The ATT-AuNPs exhibited good stability and were characterized with UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectrometry, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential techniques. The addition of pencycuron facilitated strong non-covalent interactions (electrostatic, van der Waals, and H bonding) between pencycuron and ATT-AuNPs, inducing a significant red shift in the surface plasmon resonance (SPR) peak of ATT-AuNPs along with a color change from red to blue. A linear equation was established between absorption ratio (A 720 /A 528 ) and pencycuron concentration (2.5–100 μM) with a correlation coefficient ( R 2 ) of 0.9915. The detection limit was calculated to be 0.42 μM, which was much lower than that of other analytical methods. The designed ATT-AuNP serves as a promising nanosensor for the rapid, simple, and selective label-free colorimetric detection of pencycuron in rice, potato, cabbage, and water samples, is highly sensitive, and does not require sophisticated instruments, tedious sample preparations, and time-consuming separation and pre-concentration procedures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    6
    Citations
    NaN
    KQI
    []