Finite Element Analysis of a Novel Anatomical Locking Guide Plate for Anterior Column and Posterior Hemi-Transverse Acetabular Fractures

2021 
The increasing worldwide prevalence of anterior column-posterior hemi-transverse fracture (ACPHTF) brings formidable challenges to orthopaedic surgeons. Our newly-designed locking plate had previously demonstrated promising effects in ACPHTF, but evidence of their direct comparison with conventional internal fixations remains lacking. In this study, we aimed to compare our novel plate with the traditional devices via finite element analysis. The ACPHTF model was created based on a 48-year-old volunteer’s CT data, and then fixed in three different internal fixations: an anterior column locking plate with posterior column screws, double column locking plates, and our novel anatomical locking plate. These models were next loaded with a downward vertical force of 200 N, 400 N and 600 N, and the stress peaks and displacements of three different sites were recorded and analyzed. We first tested the rigidity and found that our newly-designed locking plate as well as its matched screws had a greater stiffness especially when they were under a higher loading force of 600 N. Then we evaluated the displacements of fracture ends after applying these fixations. Both our novel plate and DLP showed significantly smaller displacement than LPPCS at the anterior column fracture line and the pubic branch fracture line, while our novel plate was not obviously inferior to DLP in terms of the displacement. This novel plate demonstrates a distinct superiority in the stiffness over LPPCS and DLP and comparable displacements to DLP in ACPHTF, which suggests this novel anatomical locking guide plate should be taken into consideration in ACPHTF.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    0
    Citations
    NaN
    KQI
    []