Eulerian simulations of perforating gun firing in air at atmospheric pressure: scallop geometry influence on design optimization

2017 
Effective perforating gun firing constitutes a key process toward achieving safe and productive wells in hydrocarbon reservoir exploitation. Within this field, the present work pursues a novel modeling approach with two main aims: investigating the physical phenomena involved in the firing of a perforating gun in air at atmospheric pressure, by identifying all key factors stressing the gun carrier; assessing perforating gun performance dependence and optimization on the scallop geometry, in terms of the piercing capability of the carrier outcoming jets and of the gun carrier resistance. This is investigated through challenging 3D Eulerian FEM simulations, displaying coherence with key experimental evidences. The obtained results provide crucial information toward the understanding of the physical phenomena involved in gun firing and of the scallop geometry implications on gun performance. The present simulations set as an advanced tool for perforating gun design and optimization, in comparison with other methodologies like Lagrangian simulations or analytical modeling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    132
    References
    1
    Citations
    NaN
    KQI
    []